Answer:
Option B
Explanation:
statement II
$(p\rightarrow q)\leftrightarrow (\sim q\rightarrow \sim p)$
$\equiv (p\rightarrow q)\leftrightarrow (p\rightarrow q)$
which is always true, so statement II is true.
Statement I $(p\wedge \sim q)\wedge (\sim p \wedge q)$
$\equiv p \wedge \sim q \wedge \sim p \wedge q$
$\equiv p \wedge \sim p \wedge \sim q \wedge q$
$\equiv f\wedge f\equiv f$
Hence, it is a fallacy statement
So, statement I is true